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A modified version of Weibull's statistical theory of the strength of brittle materials is 
proposed, in which the expression for failure probability contains an additional term. 
While this term is negligible when failure originates from a flaw of relatively large size, 
it becomes increasingly significant as the flaw size is reduced. The resulting revised 
expressions for failure probability under uniform, uniaxial tension and under Hertzian 
indentation loading are given, and the effect of a bimodal flaw size distribution is 
considered in both cases. The implications with regard to the assumed invariance of 
Weibull statistical parameters under different experimental conditions are discussed. 

1. In t roduct ion  
The scatter in failure stress data for a brittle 
material is commonly discussed in terms of the 
statistical theory of strength due to Weibull [1]. 
According to this theory, the failure probability 
can be related to the applied stress by means of an 
expression involving statistical parameters which 
are invariant with changes in specimen size or 
loading configuration. The validity of this approach 
is reexamined here, in the light of recent advances 
in the understanding of the relationship between 
the statistical theory and the actual distribution of 
flaw sizes in the material. 

Hunt and McCartney [2] have derived an 
expression relating failure probability to the flaw 
size distribution, and have formally established a 
relationship with the corresponding statistical 
expression. However, the present discussion is 
based on the less generalized analysis presented 
by Jayatilaka and Trustrum [3], in which it is 
assumed that the probability of finding a flaw of 
a given size increases monotonically with decreas- 
ing flaw size, and that there are neither stationary 
points nor points of in flexion in the region of 
the distribution controlling the experimentally 
measured strengths. Provided that these conditions 
are fulfilled the assumption of invariant statistical 
parameters should be valid. 

Not all materials can be expected to have such 

"well behaved" flaw size distributions [4, 5], and 
differences in the form of distribution may account 
for the somewhat contradictory conclusions 
arising from indentation tests on various glass 
surfaces. Oh and Finnie [6, 7], for example, 
found that the observed variation of the mean 
failure stress with indenter radius for a bore- 
silicate glass was consistent with the predictions 
of the Weibull theory. A similar conclusion was 
reached by Hamilton and Rawson [8] from their 
experiments with soda-lime glasses. In contrast, 
other workers have reported that the range of 
failure stresses for soda-lime glasses tended to be 
increasingly narrower with decreasing indenter 
radius than anticipated on the basis of either the 
experimentally derived flaw size distribution [9] 
or the statistical theory [10]. These discrepancies 
may be viewed as being equivalent to a variation in 
the statistical parameters under different loading 
conditions. 

The practical usefulness of the statistical 
approach is obviously undermined if the para- 
meters which define the failure probability can no 
longer be considered invariant. In general, this 
depends on the range of flaw sizes being sampled 
in a particular experiment. From the practical 
point of view it would be preferable to make an 
appropriate correction to the expression for 
failure probability, while still retaining the advan- 
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tage of invariant parameters. A suitable modifi- 
cation of the original theory is discussed in the 
present paper, and this analysis is extended to 
include the case of a bimodal flaw size distribution. 

2. Theoretical discussion 
The expression given by Weibull [1] for the failure 
probability F under uniaxial tension may be 
generalized as 

F = 1 - -exp  [ - - f ( - ~ o  ~) 'a-au mdV],-- (1) 

where a is the stress in the volume element d V, au 
is a threshold stress, ao is a scaling factor and m is 
the Weibull modulus. If the threshold stress is 
taken as zero and a uniform stress is applied, this 
expression reduces to 

1 F = 1--expI--V(e---m]'\ao] J (2) 

where Vis the total volume of the specimen. 
Jayatilaka and Trustrum [3] have succeeded in 

directly relating the mathematical form of the 
statistical theory to the assumed form of the flaw 
size distribution. From experimental evidence 
[11, 12] they concluded that, for an idealized 
sharp half-crack of length r the probability density 
f(c) may be represented by 

;(c) -- - -  c-n e-C0/L (3) 
(n - -2)r  

where Co and n are the constants defined in Fig. 1. 
By integrating this expression over all crack orien- 
tations and lengths for which a strain energy density 
failure criterion [13, 14] is satisfied, they showed 
that the probability J - ( a )  of a single crack 
propagating under a uniform applied stress a can 
be expressed as 

1 {~Zlrc~ - n -1  ~176 ] 

(4) 

where Km is the mode I critical stress intensity 
factor. Then, approximating the total failure 
probability F for a specimen with N cracks by 

F ~ 1 -- exp [ - -N3-(o)]  (5) 

for large N, and neglecting the second and subse- 
quent terms of the infinite series in Equation 4, 
they obtained 
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Figure I The form of flaw size distribution postulated for 
a brittle material. 

[ x .__l 
F--~ 1 - -exp  --~-.v ~K--~--c ] (6) 

for large N and a(rrCo)l/2/Kic ~ 1. Comparison of 
this expression with Equation 2 reveals that 

m = 2n -- 2. (7) 

The analysis summarized above requires that 
the strength controlling flaws be relatively large 
and lie in the low probability tail of the distri- 
bution shown in Fig. 1. When this is not the case 
the higher order terms in Equation 4 should also 
be taken into consideration. This is done here 
approximately by including the second term of 
the series in addition to the first. The way in 
which the probability of propagating a single crack 
actually varies with applied stress is shown in 
Fig. 2, together with the respective approxi- 
mations obtained by considering the first term 
alone and the first two terms together. Since 
~ - ( o )  cannot sensibly exceed unity the second 
of these approximations is generally the more 
physically reasonable, although an upper limit 
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Figure 2 Comparison of the actual probability of propa- 
gating a single crack with the approximations discussed in 
the text. 
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on the range of its usefulness is imposed as a 
result of the maximum which occurs at the stress 
o', given by 

( n + l ]  in 
o' \nrrco / Kin" (8) 

Using the new approximation for ~ ' - (o) ,  the 
expression for the failure probability becomes 

{ N [  1 - n - 1  o2rrcp]{~TrCo~-I I 

(9) 

which on rewriting in terms of the statistical 
notation gives 

F ~ - - l - - e x p  - -V  1 ( m + e ) ~ K ~ c  ]J ~oo " 

(10) 

Suppose now that the flaw sizes are distributed, 
as in Fig. 3, with a bimodal probability density 
which takes the form 

; (c)  = f~ (c) + f~(c) 

_ _  P l C ~ l - l . c - n l e - e l / c  

(nl "2)! 

+ ~ C  e -%/c  , (11) 
(n2 -- 2)! 

where P1 -~ P2 = 1. Provided that o(Tre2)V2]Kic "~ 
1, which should generally be true in practice, the 
failure probability for a specimen subjected to a 
uniform uniaxial tensile stress can be written as 

F--~ 1 - - exp  --V +-4)~Ic ]] 

x + , (12) 

where rn~, o~ and m2, o2 represent the values 

~ 

"---" ", f,(c) + %(c) 

1 
C2/n cl/n I 

Crack  L e n g t h ,  c 

Figure 3 The form of a bimodal flaw size distribution. 

2468 

s~./"r r ~ / ,  / m z  , ~e 

St ress ,  o- 

Figure 4 The modified theory for a bimodal flaw size 
distribution (solid line) in comparison with the original 
theory applied to the component distributions (broken 
lines). 

towards which the effective statistical parameters 
tend for very large and very small specimens, 
respectively. A comparison of the form of the 
resulting failure probability distribution for 
specimens of intermediate size, with those expected 
from the original theory (Equation 2) using the 
individual pairs of parameters, is made in Fig. 4. 

3. Applications to indentation strength 
The stress field around a spherical indenter in 
contact with an isotropic elastic half-space has 
been treated by Huber [15] as a special case of 
the theory of contact between elastic bodies 
orginally developed by Hertz [16]. For an indenter 
of radius R with an applied load P the contact 
circle has a radius a, given by 

Ei Es ]1 , (13) 

where ui and v s are the Poisson's ratios, and E i 
and E s are the Young's moduli of the indenter 
and specimen, respectively. At the periphery of 
the contact circle the radial tensile stress in the 
surface attains its maximum value %, which is 
related to the contact radius by 

2(1 -- vi)a a 
aa = / 1 - - u ~ + l - - V ~ R _ /  = ~ ' '  (14) 

3rr I Ei Es ] 

Outside the contact circle, the radial tensile stress 
or at a radius r from the centre is given by 

or = % �9 (15) 

Because the stress within the specimen becomes 



compressive at a small distance below the surface, 
the indentation test effectively samples only those 
flaws lying in the surface itself. Consequently, the 
volume integral in Equation 1 reduces to one 
taken over the surface only, and the probability of 
failure can therefore be expressed as 

F =  1 - - e x p [ - - f = ( Y ~ - ~ ] m 2 r r r d r  
J,, \OoJ 

p rn 

in which the second integral represents the risk of 
failure in that area now in compression beneath 
the indenter during the time it was initially in 
tension [7]. After integration and slight rearrange- 
ment, this gives 

[ ( ) tl F = 1 -- exp -- rra ~ 3m Oa m 

(m-- 1)(m + 2)  \Oo] ' 

(17) 

where m 4= 1. If a correction involving the second 
term in Equation 4 is made as previously, the 
expression for failure probability becomes 

F " ~  1--exp -- 1 ( m + 4 ) \ K ~ c ]  

\ Ooj (m + 4) 

(ogrrCot] ' r ,n 
X,K~---c}] (~Oo) 27rrdr}. (18) 

From this can be readily obtained 
t r 

F "~ 1 --exp 2 ] 3m 

(m -- 1)(m + 2) 
~ L 

3re(m+2)  (o27rCo]1 oa]m],  

--(m + 1)(m + 4) ~K~c----~]] ( O o / )  (19) 

where m # 1. For a bimodal distribution of flaw 
sizes the resulting modified expression for failure 
probability is 

F ~ 1--exp --rra 2 m l - - 1 ) ( m 1 + 2 )  

3ml(m1+ 2){o_2r rc l l l (o~ t  ml 

--(m, + 1)(m, + 4)l--K~c-c ]J o,] 

+ (m2 -- 1)(m2 + 2) , (20) 

where o(rrc2)l/2/Kic "~ 1 and ml ,  rn 2 4= 1. 

4. Discussion 
The analysis presented here provides theoretical 
insight into the inability of the Weibull theory in 
some cases to reconcile failure stress data obtained 
with radically different specimen sizes or loading 
configurations. Improving the approximation for 
the relationship between failure probability and 
the flaw size distribution by including an additional 
term of an infinite series expansion has allowed 
the development of a modified expression for 
failure probability containing a stress dependent 
correction term. While this term is negligible for 
relatively low stress failure due to a large flaw in 
the low probability tail of the distribution, so 
that the expression for failure probability reduces 
to that given by Weibull, it becomes increasingly 
significant as the failure stress increases (i.e., as 
the flaw size decreases). Without such a correction 
the use of parameters determined from relatively 
large flaw sizes will lead to increasing over- 
estimation of the failure probability as the exper- 
imentally sampled range tends towards smaller 
flaws. 

If the flaw size distribution is bimodal in form, 
the failure probability can be more accurately 
represented in terms of two sets of statistical 
parameters, each of which corresponds to one of 
the individual flaw populations which comprise the 
aggregate distribution. Variation of the loading 
conditions alters the range of flaw sizes being 
sampled experimentally, and thus affects the 
relative contributions of the constituent flaw 
size distributions to the total failure probability. 
In general, the failure probability will be under- 
estimated by the unmodified Weibull theory if 
parameters corresponding to a higher flaw size 
range than that being presently sampled are 
employed, due to the increased contribution 
of the high density of relatively small flaws in 
the second park of the distribution. Since, as 
Ernsberger [5] has pointed out, at least two 
discrete populations of flaws may be expected 
to exist in typical glass surfaces, the modified 
theory developed here is clearly of practical 
significance. 

Loading conditions may be conveniently altered 
by carrying out Hertzian tests with indenters of 
various radii. This technique offers the potential 
for exploring a relatively wide portion of the flaw 
size distribution, without the inherent difficulties 
associated with specimen edge effects which are 
encountered in performing flexural tests on brittle 

2469 



materials. Such considerations have made the 
Hertzian test popular  experimental ly,  in particular 
for examining the validity of  the Weibull theory.  
The application of  the modif ied statistical theory  
to this type of  loading is therefore o f  special 
interest.  

Finally, it  must  be emphasized that  it  is essential 
to distinguish clearly between the familiar statistical 
size effect and the phenomena deriving from 
the present modif ied analysis. The original theory 

recognizes that  the probabi l i ty  of  finding a flaw 
of  a given size depends on specimen dimensions. 
However, it  considers neither the effect of  the 
range o f  the flaw size distr ibution sampled exper- 

imentally,  nor that  of  the form of  the distribution 
itself. 
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